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1 - INTRODUCTION 

Composite materials consisting of high tensile resin-impre- 

gnated fibers are being more and more frequently used in 

structures capable of high mechanical performance. Direct 

calculation of deformation of these structures using the 

finite elements method raises major difficulties due mainly 

to the very high number of heterogeneities in the material. 

Computation methods are, therefore, based on investigation 

of equivalent homogeneous materials, i.e. effective behavior 

moduli (Willis, Hashin ...). 

In this paper we use the homogenization method. This me- 

thod applies when the material being investigated has a pe- 

riodic structure. It can then be shown that when the dimen- 

sions of the period tend homothetically to zero the fields of 
deformation and stresses tend to those corresponding to a 

homogeneous structure whose elastic properties can be 

computed precisely when a single period of the composite 

medium to be investigated is known. This boundary value 

structure is the homogenized structure and its behavior 

coefficients are the homogenized coef'^ients. This is the 
macroscopic equivalent structure. Furthermore by a locali- 

zation procedure the method allows an easy computation 

of the microscopic field of stresses and, in particular, of 

stress forces at the boundaries between fibers and matrix. 
These stress-forces are particularly important because they 

can initiate cracks and delarninations. The overstresses at 

the microscopic level may produce fiber ruptures. 

After presenting the general method of homogenization, 

which leads first to an homogenized equivalent macroscopic 

structure and secondly to a localization procedure for com- 

puting the field of microscopic stresses and stress forces, v/a 

apply the method to two types of composite materials : 

i)     Material reinforced by periodically arranged, parallel 

fibers (Figure 1) 

Fig. I   .PARALLEL FIBERS 

ii) Material consisting of a very large number of parallel 
layers of homogeneous materials superposed periodi- 

cally (Figure 2) 

Fig. 2   : MULTIPLE LA YERS 

This is followed by the numerical results obtained by using 

the MODULEF code. 



2- DESCRIPTION OF THE HOMOGENIZATION 
METHOD   [1) [4! [5l (10l [12] 

2.1 — Formulation of the problem 

Let us consider an elastic body which occupies a region fi 
related to a system of orthonormal axes Ox., ^ x3- Tnis 

body is subjected to a system of voluminal forcesjfj |and 
surface forces { F- \ on a portion Vc of boundary ou. The 
other portion of the boundary is IQ, to which a zero move- 
ment condition is imposed. 

r, 

The field of stresses at equilibrium satisfies the equilibrium 
equations 

1) 

2) 

6o, 
i| 

aüni 

f. = 
i 

=    F: 

in n 

on rc 

Furthermore, the material is elastic with fine period'C struc- 
ture, i.e. £2 is covered by a set of identical periods of rec- 
tangular (Fig. 4) or hexagonal (Fig. 5) or more complicated 
shape such as the example» 
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given in Figure» 6 and 7. 

Fig. 6: MATERIALS WITH FINE PERIODIC STRUCTURE 

Fig. 7: MA TERIALS WITH FINE PERIODIC STRUCTURE 

All the period forms must be such that opposing faces which 
correspond in a translation can be defined two by two. 

In all cases we shall designate as Y a period characteristic 
of the material which has been enlarged by homothetics 
and fixed once and for all. e then designates the homothetic 
ratio which is small and which takes us from Y to a period 
in the elastic material. The elastic structure of the material 
is then fully fcnown if it is given over a single period, e.g. the 
enlarged period Y related to the orthonormal axis system 
0y1 y2 y 3' Thsn let aiikh 'v> be the coefficients of elasticity 
on Y, which generally alter very quickly with respect to y, 
but satisfy in all respects the symmetry relation 

aijkh (v> = ajikh(y» = akhij (y) 

and positivity relation 

3an > 0, aijkh w Tkh^0 Tij 
VT.. = T.. 

i|     !' 

The functions y —»aj;i<h 'y' de'ined on Y are extended by 
Y-periodicity to the entire space 0y^ ^2 V3 assumed to be 
covered by contiguous periods identical to Y. 

The coefficients of elasticity in the material V. are then 

Fig. 4 : MATERIALS WITH FINE PERIODIC STRUCTURE     aijkh (x) defined by 

aijkh (x) = a ijkh (y). y = 

For greater simplification in the text we shall write 

a(vl= j3ijkh(y)|.ae(xl = a (-£-) , a = 

and shall consider   a (y) or a e (x) as known  matrix 6x6 
Fig. 5 : MATERIALS WITH FINE PERIODIC STRUCTURE     indexed oy the symmetrical pairs (i, j). 
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The law of elasticity 

3>   °ij = aijkh ' <*> ekh ,u> 

is written 

wlth                           0F pOOR QUALITY 

o°<x,y> = a(y) ey(u°) 

ffMx.y): a(y) [«ytu1! + «x <u°>] 

o2(x,y) = a(y) [ey(u2) + ^(u1)] 
v. a r   ae (x) e (u). 

The equilibrium equation» (1) applied to (Xe give 
i 

* \ 
When an ambiguity is possible, eithrr ex (u) or ey (u) will 

be specified depending on whether the drift occurs with 

respect to  x  or  y. The boundary conditions are finalized 

or in a more condensed form 

\ 
9)    div Oe + f = 0 . 

. i 

i ■■ 
by 

4)    u s 0 on TQ 

Given the expansion (8) of at we have (**) 

10) -V   div„ o° +-L(divu o1 + divY o°) 
e*         y            e        Y 

1 
i 
! 
t 
r 

The problem posed by (1) (2) (3) (4) has a unique solution 

which depends on e and which we shall designate u e ; to 

this corresponds a field of stresses O e given by : 

+ div    ff2 + div x o1 + f + ... = 0. 

xen.yEY. 

5]   <7e = ae(x)   e(ue) The boundary conditions (2) are treated in the same way : 

i 

i 

■ 

Numerically it is very difficult when e is small to calculate 

u e since there are a large number of heterogeneities in the 

elastic medium. We therefore try to obtain a limited expan- 

sion of the solution u e , CTe . 

11) _L a0. n + a1 .n - F + e a2 .n + ... = 0 
€ 

for x e TF y £ Y. 

Finally the conditions (4) mean that 

K 

■ 

2.2 —  Asymptotic expansions 

The solution is affected by two factors : 

i)     The first is the scale of   B   and arises from the forces 

applied and the conditions at the boundaries. 

12)    u° + e u1  + e2 u2   +   ... = 0 

forxer0, yEY. 

By making the various powers of e zero we obtain : 

. 
ii)    The second is due to the periodic structure   ;  it is on 

the same scale as the period and is repeated periodical- 
(div     (7°= 0 

13)< 

■ 
ly. (a°= a(y) ey (u °) 

: 
This justifies looking for an asymptotic expansion of the 

(div     a1  + divx o° = 0 
14) < <: form  : /a1=  a(y) [ey lu') + ex(u0)] 

* ,  6)    ue = u° (x,y)  + £ u1 (x.y)  + (2  u2 (x, y) +... 

where the   u&zix, y) are, for each xS.fl, Yperiodic func- 

tions with respect to the variable   y E Y. Then y = —■ is ap- 

( div     o 2 + div x a 1 + f = 0 
IS)] 

' o2r   a(y)  [e   (u 2) + ex (u 1l] 

s' plied to (6). Associated with the expansion (6) is an expan- 

sion of the field of deformation e (u e)       (*). 

7)    e(ue) =-fey lu°>  + exk,0) +ey(u1) 

The equations (11) and (121 will be used later. 

C)     Note that 
-r rt.3 

gap- ' + e [ex(u1)+ey(u2l]+  ... _JL  u«(x,y):-i-  ua(x.y) + 1     *     ua(x.y) 
dX|                   öX|                      e   öY| 

and of the field of stresses o e 

8)    o e = -1 a ° (x, y) + a 1 jx, y)  + e a 2 (x, y) +• ... 
<"'   div   0(«)-Ä.div    a'01-!500"! d'V      -'ST^' d,vx °         'ix.   } 

Y
l                                   1 

dW 

. i 

1 
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23 -   Resolutions 23)   divx <o'>  +f =0 n 

The systems (13) (14) (15) contain differential operator» 
in y. They therefore constitute equations with partial 
derivatives on the period of base Y, th«* unknown factors 
being the Y-periodic functions. 

System (13) :   This leads immediately to : 

16) <7°= 0 , u° =u°(x) 

System (14) :    In view of (* 6) it is reduced to : 

17) divy    cr1r 0, o1 = a(y) [eylu1) + ex(u0)] 

The deformation ex (u°) is a function only of x ; it there- 
fore plays the role of a parameter with respect to the diffe- 
rential system in y. Due to the linearity, or , u may there- 
fore be written in the form : 

If we introduce   1 z. <a ,>   , we have 

18) 

where 

ff1 = skh (y) e kh (u °) 

u^.Y^lyle^lu0) ckh 

ekh(uu): _L(5u°    + 5u_^ 
2    8> 

h.) 

div „ skh = o 

19)   skn =  a(yl[Ckh +ey (A'kh)] 

( „Ykn is Y-periodic 

The tensor C      has components given by 

c
kh 4«Mh+*ihV 
ij   * 

It can be proved that the system (19) determines the vec- 
tor X     (y) to within an additive constant. 

For any function <!>=<}> (x, y/, we define 

<*>=- ieW/*«*' yl dy 

1 

24) • 
fdivx I  +f in ft 

kh 
'kh (u°) 

Using equation (12) and taking the mean on Y in (111, we 

obtain : 

25)' 
ju° = 0 

(l.n=F 

on   C, , 

on 

The system (24) with boundary conditions (25) is a well 
posed elasticity problem   ;  the equilibrium equations are 
unchanged, as well as the toundary conditions. The elastic 
constitutive relation is 

_ kh 
2-ii = Q„ !kh (u°) 

kh 
It is homogeneous since the coefficients q ij given by 
(22) are independent of xSft . These coefficients define 
the equivalent homogeneous material. They are called homo- 
genized coefficients. The stress field I = (Zjj) is called the 
macroscopic stress field and is defined by 

The strain field E = ex (u °) is called the macroscopic 
strain field and satisfies 

E= <ex(u°) + ey (u1)> 

It can be proved that the homogenized coefficients  q 
satisfy 

kh 

(3a,>0.q!!h    ig sy^a,  ij, ijj.   Vsu = s j 

kn ii       i     ' » 
"ij     =qkh   (="ijkh' 

The solution a    of (141 is given by, 

20)    a'jx.ylr a (y) [ckh - ey tt*
h)]    e kh (u °), 

and taking the mean value, we obtain, 

21)   <al>-     q 
kh 

kh lu°) 

where 
kh 

22)    q.."   =<aijknlv)>-<aiipq(Y).pq(.Vkh(v)> 

System (15) :    It suffices to take the mean on Y in the 
the first equation to obtain 

This shows that (q |j     ) are reasonable elastic coefficients 
and that the macroscopic scale problem (24) (25) has a 
unioue solution. 

2.3 —   Microscopic fields. Localization 

The stress field a (x, y) is the first term of the asymptotic 
expansion (3) of the stress field a e (x) solution of the ini- 
tial exact problem. The field a (x, y) is called the micros- 
copic stress field. If we imagine that at each point xEft, 
there is a small ( Y period with its composite structure, then 
o1 (x,yl gives, for x kept fixed in fi, a stress field in this 
period. 

88-4 



It can be shown that a e (x) - a ' (x , -£■   ) tend» to zero 
in the   L     (fl) norm when  e  tends to zero. This proves 

(x, •*- ) is a good approximation of a e (x) when e that o 1 '-   A 

is small. The microscopic stress field a ' (x, y) , y - JLcan 
be calculated as follows: 

i) First we obtain the six X kn (y) vector fields on Y, 
each one been associated with tensor C ~ Snlt. These 
six vector-fields are solution of problem (19), which is 
an elastic type problem on the inhomogeneous period 
Y. 

ii) From the vector fields X (y) we get the homogeni- 
zed coefficients q !in   by formula (22). 

iii)  We solve the macroscopic scale, homogenized elastic 
problem (24) (25) on   ß . It gives the macroscopic 
stress field Z (x) and the macroscopic strain field 
ex(u°) = E(x),for xEß. 

iv)   Localization procedure   :   using formula (20) we can 
calculate   o    (x, y). For  x  fixed in  12   , this stress 
field on Y shows how the macroscopic stress 
£(x) =  <<7      (x, y)> is localized in an e Y period at 
xeß 

It can be proved that when e tends to zero, the stress field 
a e (x) tends to £ (x) in the weak L    (12) topology. Never- 
theless a    U.~) is a better approximation of oe (x)than 
£ (x)  : the norm L    (f2) convergence implies that 

a e (xl - o 1 (x.-^l 

tends to zero for almost every point in $2 , while the weak 
L    (fi) convergence does not. The macroscopic stress field 
Z (x)   is just a mean value while a    (x,-£-) takes into ac- 

count the fine periodic structure of the composite material. 

3 -   APPLICATION TO AN ELASTtC MATERIAL REIN- 
FORCED BY FIBERS RUNNING IN THE SAME 
DIRECTION   11] [7) 

3.1 —   Principle 

ORIGfNAi. K,".!*:? f-J 

OF POOR QUKi.fiY 

Calculation of the homogenized coefficients qj,kh calls for 
the resolution of (19). In the present case the coefficients 
aiikh (yl are independent of y3 ; the result is that the fields 
X 'i (v) are also independent Of y3 ; in (19) the varipus 
indices give a zero contribution when they refer to 4f^- 
making computation of A"1' (y) a bidimensional problem. * 

3.2 —   Numerical results 

In all the esses studied, the homogenized material is ortho- 
tropic, in other words the law of behavior has numerous 
zero elements as shown in the table below : 

"11 

261 

"1 

"22, 

»"331 

l°23( 
"13 ' 

'12/ 

'till "1122 q1133  0   0   0 

"2222 "2233  0  0  0 

Q3333  0  0  0 

SYM- 2«2323 °   ° 
2q,3,3 0 

2 1212 

11 

£22j 

'e23 i 
e13' 

\f12j 

where | a ■■ [ and je ■•} are stress and strain tensors. 

The law (26) is inverted conventionally to be written [6] 

■n\ 

27)< 

e22; 

lf33\ 

€23| 

<13 

<12J 

JL ^2.    "13 
Ei" ei "^T 

•SYM- 

0       0        0 

0       0        0 

0       0 

2G 23 

2G13 
1 

-M2 

u11 

i°22 

"33 ( 

i°23 | 

°13 

"12/ 

SH 

f-1 

i^ 

!» #* 

The computations of the previous paragraph are applied to 
an elastic material formed from a multitude of resin-impre- 
gnated unidirectional fibers whose geometric distribution is 
periodic in a plane perpendicular to their direction x3. 

Fig. 8   :a) STRUCTURATION OF FIBERS 
b) BASE PERIOD 

bringing out the following  : 

The Young's moduli Ej, Ej. E3 in the directions of ortho- 
tropy 
The Poisson's coefficient v-y\. v.3, u, T 

The shear moduli G23. G13. G13 

The numerical results which follow have been obtained by 
using the MOD'JLEF code [2] . They have been produced 
for numerous values of the ratio of impregnation and various 
forms of the cross section of the fibers. 

We give here a part of the results obtained for various forms 
of fiber, and also the curves showing the change in these 
coefficients with respect to the ratio of resin impregnation 
for fibers of circular section (Fig. 9-10-11). 

na. 5 
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ALIGNED CIRCULAR FIBER 

FIBER 

E1 = 3.8 105MPa G23r2.104MPa 
E2=E3 = .145 105      Gl2=G13 = 3.8 104MPa 

Ul2=«13=.22 

RESIN 

Er3520MPa 

u23=.25 

u = .38 

0.20        0.40 0.60        0.80 1.00 

RESIN'S RATIO 

0.20        0.40        0.60        0.80        1.00 

RESIN'S RATIO I 

Fig. 10: VARIATION OF TRANSVERSE YOUNG'S 

MODULI 

0.20        0.40        0.60        0.80 1.00 

RESIN'S RATIO 

Fig. 9 : VARIA TION OF LONGITUDINAL YOUNG's 

MODULI 
Fig. 11 : VARIA TION OF SHEAR MODULI 
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3.3 —   Anitotropy curves (Fig. 11) 

It is important to note that the homogenized media obtained 
are generally not transversally Isotropie. This comment is 
clearly demonstrated if the Young's modulus is calculated in a „,„„ 
transverse direction with polar angle 9. By applying the 
Young's modulus on vector radius we obtain the curves 
given in Figure 12. For the material to be transversally 
isotropic, the curves plotted should be arcs of a circle cen- 
tered at the origin. 

Note : 

The Young's modulus in direction 9 is given by : 

_J  
E(9) 

ORIGINAL PACN- :;J 

OF POOR QUALITY 

+ sin 2 9 cos2 9 I-1Z22 + __L) 
323 

This relation enabled the anisotropy curves in Figure 12 to 
be plotted. 

The material is transversally isotropic if E (9) is not depen- 
dent on 9, which is equivalent to 

HIMPAI   1 

9000 

1000    . 

  .   ORTMOTROPIC KICN6Y Ibl 

7000     . ■■-o 

(000    . 

5000    . X. \ 
4000   ,. \^\ 

3000    . 
\ ■ ^\. 

2000 
i        \ 

1000     . ■           \ 

0 

E2= E3= 2G23(1 +y23) 

RESIN IMPREGNATION RATIO BY VOLUME 50% 
(FIBERS//TO X1). 

I eziMPAi  | 

Fig. 12 : TRANSVERSE ANISOTROPY FOR 3 CROSS 
SECTIONS OF FIBER 

3.4 —   Stagger 

If the fibers are staggered, i.e. if a period characterizing the 
material has the form shown in Figure 13, we obtain diverse 
characteristics in accordance with the relative values of the 
sides of lengths of the rectangular cell. 

FIBER 
E1 = 380000 MPa ; G23=20000 MPa ;}'23=.25 
E2= 14500 MPa ; G13=38000 MPa ;>'13=.22 
E3=E2 ;G12 = G13 ;V'l2i}'l3 

RESIN 
E = 3520 MPa 

K=.38 

i) If i r 1 (square cell) : the characteristics of directions 
Oyj 2nd Oy.j are identical, and have the same Young's 
modulus in particular. 

El " « i" rll .■13 G23 G12 013 

(^ 
U2O00 9730 «mi B 2t M 2452 5597 133« 

G 181500 6290 (ion «0 29 .30 2«23 ♦315 3347 

O 191500 7620 »20 M 2» 29 2755 3042 M«2 

ii) If .1 - V5, i.e. if the fibers are located at the apexes of 
an equilateral triangle (Fig. 13) it can be shown that 
the material is transversally isotropic. This property is 
true for any impregnation level of the resin. 

iii) The bisecting directions 0 yo and 0 ?o P,aV the same 
roles irrespective of the values of I and the impregna- • 
tion. In particular, the Young's moduli 
these directions are always equal. 

. and En m ' 

iv)    In Figure 14 are plotted the Young's and shear moduli 
corresponding to the various values of 1 varying from 
1 to 2 and for the same resin impregnation level by 
volume. ForJ,=1, the cell is square and naturally E-. = 
Ey We then f'.nd E1 =£2 fod-V3 since then the fibers 
are at the apexes of an equilateral triangle and the ma- 
terial   is   then  transversally  isotropic,  which  implies 
E1  =    Ej- In the S3me figure are plotted the values 
E. =   ET of the Young's modulus in the bisector direc- 
tions 0 y, and 0 y~. 

For   <l = V3" we find a triple point since naturally the 
transverse isotropy then implies 

-r E2=E1-E2 
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CHARACTERISTICS 

FIEER : E    84000 MPA 

.22 

RESIN : E   4000 MPA 

.34 

RESIN RATIO 36 
FIBERS//Y1 

REF. 1 :0Y1 Y2Y3 

REF.2:0Yi Y2Y3 

Fig. 13   .EQUIDISTANTSTAGGER (L = 1.73] 

3.5 —   Comparison with experiments 

The development of this previsional method is aimed at ob- 
taining complete sets of characteristics for three-dimensional 
computations of composite structures through the finite 
elements method. 

The possibilities of experimental characterization are indeed 
very reduced. Few tests are reliable, each one being specific 
to a characteristic, not permitting to reach them all. The 
results of measurements being very scattered in relation to 
production batches, mean values have to be used. 

The extreme variety of resins give a very wide range of pro- 
ducts to be used in production. Each fiber-resin pair can be 
associated within variable proportions. It is unthinkable to 
be able to experiment all configurations. 

Each material is therefore characterized in an incomplete, 
dissimilar and inaccurate manner. 

Tables presented hereafter explain application of the homo- 
genization theory to the two materials : glass R - Resin 
Ciba 920 (36 % - Resin in volume) and carbon CTS - Resin 
Ciba 920 (50 % resin in volume). We have considered several 
distributions and shapes of fiber. 

Taking these values into account, average measured values 
were assigned to glass-resin composites while values obtained 

r 

sv 

21000 

20000 

19000 

18000 

17000 

16000 

15000 

14000 

13000 

12000 

11000 

YOUNG'S MODULUS (MPA) 

1.00 

E2 = E3REF. 2 
E2 REF. 1 
E3 RL.F. 1 

1.20 1.40 1.60 1.80 2.0Q 

Fig. 14   : VARIATION OF YOUNGS AND SHEAR MODULI 
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by transposition of tests results and proportion computa- 

tion were assigned to carbon-resin composite. As a reminder, 

characteristics obtained with two bidimensional previsional 
methods : PUCK [11] and HALPIN-TSAI [14] were also 

given. For reasons indicated formerly, comparisons must be 

cautiously made. Results obtained for glass-resin composite 

with staggered fibers layout at the apexes of an equilateral 
triangle (ensuring transverse isotropy) are nearest to measu- 
red values .With those two methods, ^3 and G23 cannot be 

obtained. 

Validity of the results is evidently subjected to the assump- 

tions made on shapes and lay-out of fibers. However, the 

undeniable advantage of this method aims at supplying 

complete and consistent sets of values, mutually coherent. 

As far as carbon based composite is concerned, it is less 

clear but, in this case, the real shape of the fiber is not ob- 

served. On the other hand, when the shape is more accurate 
(«Kidney» shaped), the direction of the fiber does not vary 
and is therefore as little realistic. Of course, a configuration 

taking into consideration random direction will probably be 

nearer to the truth. 

For the two considered materials, estimates based on the 
homogenization theory are nearer to those based on the 

widely used HALPIN-TSAI method. 

The homogenization theory seems efficient to compute the 

mechanical characteristics of composite materials. 

COMPARATIVE TABLE FOR CARBON CTS 
RESIN CIBA 920 (50 % RESIN IN VOLUME) COMPOSITE 

REFERENCE 

VALUES 

H0MOGENIZATI0H THEORY OTHER PREVISIONAL METHODS 

ALIGNED 

CIRCULAR 

FIBERS 

STAGGERED 

CIRCULAR 

FIBERS 

"KIDNEY" 

SHAPED FIBERS 

(MEAPJ VALUES) 

PUCK HALPIN-TSAI 

El 
{MPa) 

120 000 119 299 119 293 119 290 119 260 119 260 

£2 

(MP a) 

6 000 6 284 li 035 8 000 11620 5 620 

E3 
(MPa) 

6 000 6 284 6 03S 7 950 11620 £620 

  
Yl2 0.2B 0.299 0.299 0.31 0.3 0.3 

Y,3 0.28 0.299 0.299 0.29 0.3 0.3 

Y23 0.20 0.435 0.457 0.27 - 
I 

- 

G,2 
(MPa) 

3 800 3 454 3 391 4 500 4 250 
i 
|            3 350 

i 

<M3 
( MP a) 

3o00 3 454 3 391 3 200 4 250 j             3 350 

ZJ  (MPa) 
2 500 2 631 3 266 2 100 - 

i 

l 
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COMPARATIVE TABLE FOR GLASS R-RESIN fR OLIALHY 

CIBA 920 (36 X RESIN IN VOLUME) COMPOSITE ^  Pu   K V 

MEASURED 

VALUES 

H0M0GENIZAT10N THEORY OTHER PREVISIONAL METHODS 

ALIGN; : 
CIRCULAR! J-RS 

STAGGERED 
CIRCULAR FIBERS P'JCK HALPIN-TSAI 

E1 
(MPa) 55 000 55 226 55 215 54 450 54 450 

E2 
(MPa) 17 000 

20 275 

(£"2 = 13 496) 
16 016   . 18 800 18 570 

E3 
(MPa) 17 000 

20 275 

(El = 13 498) 
16 016 18 800 18 570 

>'12 0.26 0.253 0.256 0.264 0.264 

h3 0.26 0.253 0.256 0.264                        0.264 

>'23 - 
0.229 

(K23 = 0.437) 
0.357 - -. 

G12 
(MPd) 

5 600 6 383 5 837 6 990 5 560 

G13 
(MPa) 5 600 6 333 5 887 6 990 5 560 

G23 
(MPa) - 

4 539 

(G"23=8 250) 
5 882 - - 

3.6 —   Microscopic streu field 

Given a structure consisting of a unidirectional material and 
subjected to a simple shearing overall stress field within the 
plane (1.2) normal to the direction of fibers, the biaxial 
stress tensor at macroscopic level is : 

0 o 0 

a 0 0 

0       0       0 

The localization method allows calculation of both the stress 
field at microscopic level which, in any point of the r-\=terial 
period, is : 

"11    "12      u 

a12   a22      " 
0       0     a33 

and the stress forces at fibre / matrix interface as represented 
in Figuia 15. 

Fig. 15   : STRESS FORCES 

M. f*B| 88- 10 



L2 ORIGINAL PACE fB 
OF POOR QUALiTY 

4 - APPLICATJOH TO A PERIODIC STACK OF 

HOMOGENEOUS LAYERS  [4] [7] 

4.1 -   Principle 

We »hall con*kJ»f * periodic stack of a multitude of homo- 

genized layerj, E»c*i layer is characterized by a direction of 

the fibers. In the aack these directions vary periodically 

whilst remaining orthogonal to axis Ox-j. 

interface: 

(x-i) ijkh'*3'/ Uytr (pr1, ijkh =c ;;uh (constant) 

ijkh <«3>/ LAYER Ipl =.-',«1 'CONSTANT! 

Fig. IS: MUL TIPLE LA YERS. EACH LA YER POSSESSES 

A PLANS OF ELASTIC SYMMETR Y NORMAL 

TO THEx3AXIS IMONOCLINICSYMMETRY) 

In this situation the homogenization formulae are conside- 

rably simplified since the problem (19) is then reduced to a 
system of differential equations which may be solved ex- 
plicitly. For th* details, refer to D. Begis, G. Duvaut, A. 
Hassim [1| and to the references in this publication. 

HOMOGENIZED MODULI 
OF EACH LAYER 

HOMOGENIZED MODULI 
OF COMPOSITE 

El 120 0C0 MPa 45 128 MPa 

E2 s oca Me« 4S 128 MPa 

E3 

  
6 000 MPa 6 198 MPa 

»23 0.20 0.188 

>-13 0.2S 0.188 

f« 0.28 0.30 

G23 2 S00 MPa 3 015 MPa 

G13 3 8O0MP. 3 015 MPa 

G12 3 800 MPa 17 2S0 MPa 

Conclusion 

We have presented several applications of the homogeniza- 
tion techniques for computing the coefficients of elasticity 

of composite materials. Other applications using the locali- 

zation procedure are contemplated as regards fine analysis 

of the field of stresses using asymptotic expansions, the 

effect of defects in the composites [9] and more generally, 

damage to the materials of composite structure containing 

inclusions or precipitates. 

Strictly speaking, these techniques apply only to absolutely 

periodic structures, but with the backing of statistical ana- 

lyses it is possible to identify the fluctuations likely to be 

produced by periodic defects. It is noted generally that 

strict periodicity reinforces the anisotropy of the computed 

homogenized material with respect to the industrial model. 

4.2 —   Numeric«! Explication 

As an illustration vw consider two cases  : 

1) a laminate cor-iisting of 3 identical layers disposed pe- 

riodically. The layers have equal thickness and their 

fibers orienf.at-.ons are respectively — 60°, 0°, and 60° 

with respect to the x« - axis. The homogenized material 

then prevents a transverse isotropy which complies 

with the sener«! results on isotropy, cf. (8] . 

2) a laminate corseting of 18 layers identical to the above 

and laid up at successive angles of 10 to each other. It 

is to i,j checked that the same result is obtained as in 

the previous case. 

We give in the tafoie presented hereafter the moduli.of each 

layer and the moduli of the composite which are identical 
for the two asif» (3 layers and 18 layers). 
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